
Farfield Point Source
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The farfield (which contributes most of the ground motion even in the 
near-source region) displacement amplitude is proportional to the slip 
rate on the fault. 




Near Fault Ground Motion
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Peak Ground Motions
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PGA and PGV Yucca Mountain


! "!

 
Figure 3.!Probability of exceedance calculations for horizontal PGA at Site A, a hypothetical, 

reference rock outcrop site at the repository horizon (Stepp et al., 2001). From the 1998 Yucca 

Mountain PSHA extrapolated to 10
-8

/yr by Stepp and Wong (2003). 

 

In response to these concerns, the Science and Technology Program (S&T) in the Office 

of Civilian Waste Management (OCRWM) of the United States department of Energy 

(DOE) formed a committee in September 2003 to investigate the nature and plausibility 

of these extreme ground motions. The Extreme Ground Motion Committee (ExGMCom, 

Table 1) took on as its the first order of business a comprehensive assessment of extreme 

ground motions through many disciplines of the earth sciences, achieved through the 

Workshop on Extreme Ground Motions at Yucca Mountain, held in Menlo Park, 

California, August 23-25, 2004.  The heart of this Workshop was the 29 presentations 

made over three days, although the commentary and criticism of all the invited 

participants figured prominently in the outcome.  The report on the Workshop (Hanks et 

al., 2006) includes a written summary of all the presentations together with findings and 

recommendations; it also includes, in a lengthy appendix, short papers written by each 

invited speaker(s) on the topic of their presentations. 

 

 

 

 

 

! "!

 
Figure 4.  Same as Figure 3, but for horizontal PGV. 

 
While not formally published until 2006, the Workshop Report was available in draft 
form in June 2005, laying out the basic framework of the Extreme Ground Motion 
(ExGM) research program of Physical Limits to Ground Motion, Unexceeded Ground 
Motions, and Frequency of Occurrence of ground-motion amplitudes such as PGA and 
PGV or source properties related to them, such as stress drops and faulting 
displacements.  DOE then launched the ExGM research program as a 5-year program to 
be funded at $1M/yr. 
 
DOE required that ExGM engage the broad earth-science community, which was easily 
accomplished through the Southern California Earthquake Center (SCEC).  In September 
2005, approximately 100 SCEC scientists met for three days (September 8-10) after the 
SCEC Annual Meeting to discuss and review the Workshop draft report.  The SCEC 
written review, prepared by Paul Somerville, of the Workshop report was taken into 
account in preparing the final report (Hanks et al., 2006). Approximately 1/3 of the 
ExGM budget has been placed at SCEC, to support its scientists engaged in the ExGM 
research program, as well as to support the highly successful SCEC/ExGM annual 
workshops.  Held in 2006, 2007, and 2008 before the annual meeting, these workshops 
summarized the ExGM research results of the preceding year; each of these workshops 
was attended by approximately 100 interested scientists, most of whom were not 
supported by ExGM. 
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Slip and Stress at a Point  
on the Fault
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σE  =Δσ =Δσ(static) = σ0 –σ1 



Stress Drop and Moment
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Linear 
Elasticity
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Stress Drops: Southern California
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Global Stress Drops
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and find that a deconvolution does not improve our results. The
deconvolution relies on an accurate prediction of the depth phase
spectrum, which in turn relies on fairly accurate depth informa-
tion. It is possible that the catalog depth that we use is not accurate
enough for such an application. Although Figure 5 presents just a
single example, we found in general that depth phases were not a
significant source of bias in our source parameter estimation. The
lack of sensitivity of our method to depth phases is caused mainly
by three factors. First, the multitaper method includes smoothing
that partially fills in the holes in the spectra, and second, reasonable
azimuthal station coverage will tend to even out the depth phase
effect and flatten the source spectral stacks. Third, we are fitting
source spectra over a large bandwidth from 0.02 to 2 Hz. Over
this bandwidth, the depth phase spectra oscillate with a zero trend
(Figure 5 c) for most source depths and thus have little influence
on the corner frequency estimate, which is governed by the low-
and high frequency asymptotics. Earlier controversies surrounding
depth phases [Hanks, 1981; Langston, 1982;Hanks, 1982; Burdick,
1982] may have been in part due to the limited bandwidth of the
data available at that time.
For these reasons, and because our earthquake depths may not be

accurate enough to be sure we are improving our corner frequency
estimates, we do not apply corrections for depth phases in the re-
sults presented here. However, it is possible that depth phases may
have a stronger effect on some of the second-order features in the
spectra, such as the parameter γ (set to unity in equation 2) or an
intermediate frequency range with a different fall-off rate.
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Figure 6. Histogram of logarithmic stress-drop estimates for a
different minimum number of required stations. a) For at least
three stations per event. b) For at least 20 stations per event.

3. Global average source properties

We first investigate the average scaling properties of our results
in order to check for consistency with previous results, as well as for
indicators of possible bias in the stress-drop estimates. A histogram
of the whole data set (Figure 6) shows that the stress-drop estimates
vary over more than three orders of magnitude with a median global
stress drop of 3 to 4 MPa. Requiring more stations per earthquake
does not significantly reduce the scatter in the distribution, so we
continue requiring only three stations so as to obtain results for the

maximum number of earthquakes. The stress drops are roughly log-
normal distributed. The mean and the median of the log stress-drop
distribution are similar, but for robustness we will use median esti-
mates in the discussion that follows. Our computed median stress
drop depends strongly upon many of our modeling assumptions,
especially the choice of the Madariaga [1976] model and a constant
rupture velocity of 3.5 km/s (0.9 times the fixed S-wave velocity
of 3.9 km). For example, slower rupture velocities would translate
to smaller estimated source radii and larger stress drops. However,
because we have applied a consistent method across the data set,
the shape of the distribution and the relative stress drops among
different regions are robust results.

3.1. Moment dependence

We find that the median stress drop is independent of moment,
which implies self-similarity over theMW range of our data (Fig-
ure 7). To check the distribution for any trend with respect to mo-
ment, we calculate median values over 0.4MW bins. We test the
robustness of the obtained median values by using a bootstrap re-
sampling over 100 iterations and computing standard errors for each
magnitude bin.
Because of the finite bandwidth of our data with the lower limit

of our analysis at 0.02Hz, we display the same data in a cross-plot of
corner frequency versus moment (Figure 8). The gray shaded area
marks the resolution limit. The data in our catalog are limited toMw

greater than 5.2. Within the resolution bounds of the data we find
no significant variation of stress drops with moment. Figure 8 com-
pares our result with some previous studies of scaling parameters
[Archuleta et al., 1982;Mori and Frankel, 1990;Humphrey and An-
derson, 1994; Boatwright, 1994; Abercrombie, 1995; Hough, 1996;
Venkataraman and Kanamori, 2004; Tajima and Tajima, 2007] and
we find them to be remarkably consistent with our results. Some
of the studies compiled in Figure 8 used different source parame-
ters, such as source radius [Mori and Frankel, 1990; Abercrombie,
1995] and stress drop [Hough, 1996; Venkataraman and Kanamori,
2004]. We have rescaled these to corner frequency using our model
assumptions according to equation 3. Taken together, we see no
dependence of stress drop with seismic moment over 13 orders of
magnitude, which is strong evidence for earthquake self-similarity
on a global scale.
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Figure 7. Stress-drop versus moment. The mean of 100
bootstrap-resampled median stress drops for bins of 0.4 in mo-
mentmagnitude is shownby thewhite squares. Error bars denote
the standard errors from bootstrap resampling. Note the general
independence of stress drop and moment over the magnitude
range of the data.
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and find that a deconvolution does not improve our results. The
deconvolution relies on an accurate prediction of the depth phase
spectrum, which in turn relies on fairly accurate depth informa-
tion. It is possible that the catalog depth that we use is not accurate
enough for such an application. Although Figure 5 presents just a
single example, we found in general that depth phases were not a
significant source of bias in our source parameter estimation. The
lack of sensitivity of our method to depth phases is caused mainly
by three factors. First, the multitaper method includes smoothing
that partially fills in the holes in the spectra, and second, reasonable
azimuthal station coverage will tend to even out the depth phase
effect and flatten the source spectral stacks. Third, we are fitting
source spectra over a large bandwidth from 0.02 to 2 Hz. Over
this bandwidth, the depth phase spectra oscillate with a zero trend
(Figure 5 c) for most source depths and thus have little influence
on the corner frequency estimate, which is governed by the low-
and high frequency asymptotics. Earlier controversies surrounding
depth phases [Hanks, 1981; Langston, 1982;Hanks, 1982; Burdick,
1982] may have been in part due to the limited bandwidth of the
data available at that time.
For these reasons, and because our earthquake depths may not be

accurate enough to be sure we are improving our corner frequency
estimates, we do not apply corrections for depth phases in the re-
sults presented here. However, it is possible that depth phases may
have a stronger effect on some of the second-order features in the
spectra, such as the parameter γ (set to unity in equation 2) or an
intermediate frequency range with a different fall-off rate.
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3. Global average source properties

We first investigate the average scaling properties of our results
in order to check for consistency with previous results, as well as for
indicators of possible bias in the stress-drop estimates. A histogram
of the whole data set (Figure 6) shows that the stress-drop estimates
vary over more than three orders of magnitude with a median global
stress drop of 3 to 4 MPa. Requiring more stations per earthquake
does not significantly reduce the scatter in the distribution, so we
continue requiring only three stations so as to obtain results for the

maximum number of earthquakes. The stress drops are roughly log-
normal distributed. The mean and the median of the log stress-drop
distribution are similar, but for robustness we will use median esti-
mates in the discussion that follows. Our computed median stress
drop depends strongly upon many of our modeling assumptions,
especially the choice of the Madariaga [1976] model and a constant
rupture velocity of 3.5 km/s (0.9 times the fixed S-wave velocity
of 3.9 km). For example, slower rupture velocities would translate
to smaller estimated source radii and larger stress drops. However,
because we have applied a consistent method across the data set,
the shape of the distribution and the relative stress drops among
different regions are robust results.

3.1. Moment dependence

We find that the median stress drop is independent of moment,
which implies self-similarity over theMW range of our data (Fig-
ure 7). To check the distribution for any trend with respect to mo-
ment, we calculate median values over 0.4MW bins. We test the
robustness of the obtained median values by using a bootstrap re-
sampling over 100 iterations and computing standard errors for each
magnitude bin.
Because of the finite bandwidth of our data with the lower limit

of our analysis at 0.02Hz, we display the same data in a cross-plot of
corner frequency versus moment (Figure 8). The gray shaded area
marks the resolution limit. The data in our catalog are limited toMw

greater than 5.2. Within the resolution bounds of the data we find
no significant variation of stress drops with moment. Figure 8 com-
pares our result with some previous studies of scaling parameters
[Archuleta et al., 1982;Mori and Frankel, 1990;Humphrey and An-
derson, 1994; Boatwright, 1994; Abercrombie, 1995; Hough, 1996;
Venkataraman and Kanamori, 2004; Tajima and Tajima, 2007] and
we find them to be remarkably consistent with our results. Some
of the studies compiled in Figure 8 used different source parame-
ters, such as source radius [Mori and Frankel, 1990; Abercrombie,
1995] and stress drop [Hough, 1996; Venkataraman and Kanamori,
2004]. We have rescaled these to corner frequency using our model
assumptions according to equation 3. Taken together, we see no
dependence of stress drop with seismic moment over 13 orders of
magnitude, which is strong evidence for earthquake self-similarity
on a global scale.
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Figure 7. Stress-drop versus moment. The mean of 100
bootstrap-resampled median stress drops for bins of 0.4 in mo-
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Global Stress Drops
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σ (x, t) = σH (t − x / β)
σ (x, t) = µ∂u / ∂x
u = 0                 t<0
u(t) = (σ / µ)βt      t>0
The Fourier spectrum of u(t) is

Ω(ω ) = (σ / µ)βt exp− iωt

0

∞

∫ = − 1
ω 2( ) σβ µ( )

The initial particle velocity is:

u(t)= σ
µ( )β

The inverse Fourier transform of  u(t) over a finite frequency band

u(t) = 1
2π( ) σβ µ( ) 1

ω 2( )−ω s

ω s

∫ exp(iωt)dω

u(t) = 1
2π( ) σβ µ( ) exp(iωt)dω

−ω s

ω s

∫
u(t) = 1

π( ) σβ µ( )ω s
sinω st

ω st( )
For ω s = 10Hz and σ = 10MPa,   u( f = 10)  2g

Brune’s 
Spectral Model
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Brune’s 
Spectral Model


 

u(x = 0, t) = (σ / µ)βτ (1− e− t /τ )
u(x = 0, t) = (σ / µ)βe− t /τ

The Fourier transform of displacement is
Ω(ω ) = (σ / µ)βω−1(ω 2 + τ −2 )−1/2

where τ = O(r / β)
The farfield displacement is proportional to slip rate
and the effect of diffraction from the finite size (r) of 
the fault is approximated by multiplying by e−αt .
Of course we now have to consider the reduced time
′′t =t-R/β  and we will multiply by a factor f i(r/R)

u(R, t) = f i r / R( )(σ / µ)β ′′t e−α ′′t

u(R, t) = f i r / R( )(σ / µ)β     at ′′t = 0
The Fourier transform of the displacement u(R,t) is
Ω(ω ) = f i r / R( )(σβ / µ)(ω 2 +α 2 )−1

f and α  are determined by requiring the long-period 
limit of the spectral density agrees with that from a 
double-couple determined from a dislocation.

Ωs (ω ) = Rθϑ M 0

4πρβ 3R( )
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Brune’s Spectral Model

The average spectrum is given by:
Ωs (ω ) = Rθϑ σβ / µ( ) r / R( )(ω 2 + (2.34β / r)2 )−1

The corner frequency fc = (1 2π )(2.34β / r) = 0.37β / r
At zero frequency, the spectrum must be the same as that from
the double-couple dislocation.

Ωs (0) = Rθϑ M 0

4πρβ 3R( )
or

M 0 =
4πρβ 3R( ) Ωs (0)

Rθϑ

Brune : fc = 0.37β / r
Madariaga(1976) fc = 0.21β / r
Madariaga(1979) fc = 0.28β / r
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Brune Spectrum
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Computing Corner Frequency and 
Seismic Moment from Spectrum
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Figure 5. a) Windowed normalized time series of one example trace with strong depth phases (black). The computed
stick seismogram is shown in bold grey. b) Computed EGF-corrected source spectra for the example trace (black).
The best-fitting theoretical model (dashed grey) has a corner frequency of 0.48 Hz and a stress drop of 14.5 MPa. c)
Demeaned spectrum of the stick seismogram. d) Sum of best-fitting theoretical model and spectrum of stick seismo-
gram (black). The dashed grey line shows the new best-fitting model. Note the small difference in fc compared to
b).

2.2. Stress drop estimation

After subtracting the EGF, we obtain absolute source spectral
estimates that are isolated from site effects at the stations, average
attenuation along the propagation path, and also have been corrected
for estimated attenuation variations in the source region. From these
spectra, we now estimate corner frequencies according to equation 2
for individual events. Assuming a circular fault, the stress drop∆σ
canbeestimated fromthecorner frequencyfc of the source spectrum
and the seismic momentM0 using the following relations [Eshelby,
1957; Madariaga, 1976]:

∆σ =
7
16

(

M0

r3

)

, fc = 0.32
β
r

, → ∆σ = M0

(

fc

0.42β

)3

,

(3)

where r is the source radius and β is the shear-wave velocity near
the source. We use a constant β of 3.9 km/s and assume the rup-
ture velocity to be 0.9 β. This assumption of a circular fault may
not be accurate for all events, especially for the largest strike-slip
events where the rupture geometry is constrained by the depth of
the brittle-ductile transition. However, to keep the model as simple
and consistent across the data set as possible, we do not attempt to
correct for this effect.
The corner frequency is expected to be below 1 Hz for most

events of Mw > 5. In the log domain, the frequency sampling
of the spectra is unevenly distributed with fewer samples for the
flat part of the spectrum below the corner frequency than at higher
frequencies. This sample weighting may lead to a biased estimate
of fc because the least-squares fit will be dominated by the high-
frequency part of the spectrum. To prevent this, we resample the
source spectra to an even spacing in the log domain. In general this
results in a better fit at long periods. We exclude an additional 67
events that have an RMS misfit greater than 0.2 between the ob-
served log source spectra and the theoretical log spectra. Our final
dataset contains 1759 individual source spectra with accompany-
ing corner-frequency and stress-drop estimates. Note that the lower
bound of our spectral analysis window is constrained to 0.02 Hz
by the maximum window length of 51.2 s and constitutes a resolu-

tion limit that may bias stress-drop estimates for large magnitude
earthquakes. This resolution limit is discussed in Appendix A.
For shallow earthquakes, the surface-reflected depth phases (pP

and sP ) arrive shortly after the primary P -wave arrival and may
arrive within our signal window depending on the earthquake depth
and epicentral distance to the station. The different time delays and
amplitudes of the depth phases at each receiver will have an effect on
the spectrum [Warren and Shearer, 2005]. Using synthetic model-
ing, we investigate the effect of the depth phases on the spectra and
the source parameter estimation. We generate stick seismograms
using the earthquake depth, arrival times, and surface reflection co-
efficients from the IASPEI91 model [Kennett and Engdahl, 1991]
for the predicted radiation pattern of the best-fitting CMT double-
couple source. An example synthetic with depth phase arrivals is
shown in Figure 5 a, together with the corresponding real data trace.
Note the prominent sP arrival in both the data and synthetics. Fig-
ure 5 b shows the spectrum of the real data trace, together with the
theoretical source spectrum for the best-fitting corner frequency of
this event. The effect of the depth phases alone can be seen by com-
puting the spectrum of the stick seismogram (Figure 5 c). Since
the synthetic uses a delta-function source with a white spectrum,
the additional depth phase spikes cause resonances in the spectrum
at periodic intervals. Additional spectral effects include the finite
length of the analysis window and the smoothing of the spectra
resulting from the multitaper method, which gives the overall spec-
trum an oscillating character. The spacing between the holes in
the spectrum is largely determined by the earthquake depth and the
source-receiver azimuth. In order to find out whether the distortion
of the spectrum caused by depth phases causes a significant bias
in the corner frequency estimates, we sum the demeaned synthetic
depth phase spectrum for one example event and the theoretical
source spectrum for the corner frequency estimate of the same event
(Figure 5 d). We repeat the spectral fitting procedure on the summed
synthetic spectrum to see if the addition of the depth phase effect
leads to a significant difference in the corner frequency estimation.
Fitting a corner frequency to the summed synthetic spectrum, we
obtain a similar corner frequency estimate as before (compare inset
in Figure 5 b and d).
Finally, we test a deconvolution of the spectra with the demeaned

theoretically expected spectra of depth-phase stick-seismograms
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Brune Spectrum with Kappa
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Acceleration: Gold Mine
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Brune Spectrum with Kappa

κ= t* = travel time/Q 
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Slip and Stress at a Point  
on the Fault
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σE  =Δσ =Δσ(static) = σ0 –σ1 



Brune’s Spectral Model

M 0 = 16 7( )σr3

fc = 0.37β / r
M 0 = 16 7( )σ (0.37β / fc )3

σ = (7 /16)(1 / 0.37β)3⎡⎣ ⎤⎦M 0 fc
3

Brune : fc = 0.37β / r
Madariaga(1976) fc = 0.21β / r
Madariaga(1979) fc = 0.28β / r
Thus the difference in stress drop between Brune and Madariaga
is (0.37 / 0.21)3 = 5.5
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Stress and Energy (1)


� 

σ a = µ
Es
M0

  : Apparent Stress

σ a ≤ Δσ /2

Es = 1
2 σ0 +σ1( )DA −σ f DA : Elastic energy -  Frictional Energy

Orowan's model: σ f = σ1

Es = 1
2 σ0 −σ1( )DA  : Only the stress difference is measured

Es = 1
2 Δσ( )DA

DA = M0 / µ
1
2 Δσ( ) = µ Es

M0
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Stress and Energy (2)


ΩS (0) = Rθϑ M 0 / (4πρβ 3R) = Rθϑ M 0 / (4πµβR)

ΩS (ω ) = u(t)e− iωt

−∞

∞

∫ dt ≤ u(t) e− iωt

−∞

∞

∫ dt =ΩS (0) provided that 

the displacement pulse does not change sign.
Following Randal (1972)

let x=ω /2π fc   ΩS (ω ) = Rθϑ M 0 / (4πρβ 3R)⎡⎣ ⎤⎦F(x)

where F(x)=(1+x2 )−1   for Brune's Model

Note: for P waves ΩP (ω ) = Rθϑ M 0 / (4πρα 3R)⎡⎣ ⎤⎦F(x)

 and fc = 0.37α / r

ER (PorS) = (1 / 2)( Rθϑ
2 M 0

2 f 3c ) / (ρc5 ) x2
0

∞

∫ F2 (x) where c =α  or β

ER (S)
ER (P) =

3α 2

2β 2
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Following Randall, BSSA, 1973: The spectral theory of seismic 
sources




Stress and Energy (3)


 

Thus the total radiated energy is 

ER = (11 / 9)(4π / 5)( Rθϑ
2 M 0

2 f 3c ) / (ρβ 5 ) x2
0

∞

∫ F2 (x)

This is valid for any choice of spectral model.
Assuming the stress drops from σ 0  to σ 1: σ = σ 0 −σ 1

The energy available for seismic radiation from a circular fault
W = (1 / 2)(σM 0 / µ)
Using M 0 = (7 /16)σr3 ⇒σ = (16 / 7)(M 0 / r3 )
Substitute σ  this into the expresssion for W

W= 7π 3M 0
2 f 3c( ) 4ρβ 5k 3   where 2π fc = kβ / r

W = ER

7π 3M 0
2 f 3c( ) 4ρβ 5k 3 = (11 / 9)(4π / 5)( Rθϑ

2 M 0
2 f 3c ) / (ρβ 5 ) x2

0

∞

∫ F2 (x)

which leads to an expression for k

k  17.3 x2
0

∞

∫ F2 (x)
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Stress and Energy (4)


 

For Brune's spectral model one finds
k  2.80 as opposed to what Brune derived 2.34 (correction, 1971)
fc = 0.44β / 4  which is 20% larger.
Many different models including simple ω−2  (k=2.35) and 
even simple ω−3  models (k=2.96) or spherical models (ω−2 ) with values
of k~2.7 allow one to estimate ER

ER  3.0 M 0
2 fc

3

ρβ 5
⎛
⎝⎜

⎞
⎠⎟

Recall that we started with an energy for a circular fault

W=(1/2)(σM 0 / µ) = ER = 3.0 M 0
2 fc

3

ρβ 5
⎛
⎝⎜

⎞
⎠⎟

σ = 2µ ER
M 0( )   twice the "apparent stress" (Wyss and Molnar, 1972)

σ  6.0 M 0 fc
3

β 3
⎛
⎝⎜

⎞
⎠⎟
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Fraction of Energy in Source Spectrum 


0.01

0.1

1

0.1 1 10 100

Fraction of Corner Frequency (f/fc)

From Singh and Ordaz, BSSA, 1994

Fraction of Source Energy as a Function of

Normalized Corner Frequency 

f/fc    %

1! 0.18

2! 0.45

3! 0.60

6! 0.79

10! 0.85

20! 0.94
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Representation Theorem


 

â • us = fr ∗ c2
dsr
dq

•Ga
s⎛

⎝⎜
⎞
⎠⎟
+ c2

dGa
s

dq
• sr

⎛
⎝⎜

⎞
⎠⎟
+
dc
dt
sr •Ga

s( )⎡

⎣
⎢

⎤

⎦
⎥

y t ,x( )
∫ dl

Spudich and Frazer, BSSA, 1984 

Slip Rate  
Time Function 

Stress Drop  
(spatial derivative of slip) 

Change in isochrone 
Velocity--acceleration 
of the the rupture front 

un x,t( ) = dτ ui (ξ,τ[ ]
Σ
∫∫

−∞

∞

∫  cijpqν j∂Gnp (x,t − τ;ξ,0) / ∂ξq  dΣ
Aki and Richards, (3.2) 
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“Seismic Displacements Near a Fault” 
 Keiiti Aki ( J. Geophys. Res., 1968 

Ul Q,ω( ) = DΔhΔl A ω( ) sin Xa

Xa

exp −iωr a − iXa −iωl v( ) + B ω( ) sin Xb

Xb

exp −iωr b − iXb −iωl v( )⎡

⎣
⎢

⎤

⎦
⎥

Xc =ω (Δl 2) 1 v( ) − cosθ c( )⎡⎣ ⎤⎦

D = D0

h2 − Z 2( )12
h

      0 < Z < h

U(Q,t) = FFT −1 Ul (Q,ω )
l∑⎡⎣ ⎤⎦
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•  Fault Geometry: 
Length, Width 

•  Slip 

•  Rise Time 

•  Rupture Velocity 

Sl
ip

 R
a

te
 

Sl
ip

 

Time 

Time 

Rise Time 

Finite Fault—Kinematic (Haskell, 1964)
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Haskell Model: A rupture front radiates out from the 
hypocenter at constant speed.  Each point on the 
fault has the same slip and the same rise time.  The 
time at which a point starts to slip is determined by 
the distance of that point from the hypocenter 
divided by the rupture speed. 

Haskell Model
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Imperial Valley Slip and Rupture


From Archuleta, 1984, JGR 81 ERI Notes: RJA 



Kinematic Slip Functions 
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Displacements from 
Kinematic Ruptures with 
Different Slip Functions


Station 3 Station 1 
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Displacements from 
Kinematic Ruptures with 
Different Slip Functions


Station 2 
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