about agu

Outstanding Student Paper Awards

The following members received Outstanding Student Paper Awards at the 2008 AGU Fall Meeting in San Francisco, Calif. See also Outstanding Student Paper Awards published previously (Eos, 90(18), 159–160, and 90(19), 170).

PAGE 177

Seismology (S)

Carola Di Alessandro, Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy. Influence of site classification on computing empirical ground-motion prediction equations in Italy.

Annemarie Balty, Stanford University, Stanford, Calif. Estimation of scaled seismic energy, apparent stress and acceleration.

Moritz Bernauer, Ludwig-Maximilians-Universität, Munich, Germany. Inferring near-receiver strain waveform from ambient noise and calibrating measurements of rotational and translational ground motions.

Eric G. Daub, University of California, Santa Barbara. Accounting for gouge-scale strain localization in dynamic earthquake ruptures.

Garrett G. Euler, Washington University, St. Louis, Mo. Shear velocity structure of the Cameroon volcanic line region from Rayleigh wave phase velocities.

Yong Keun Hwang, University of Michigan, Ann Arbor. Global teleseismic P wave attenuation.

Morgan P. Moschetti, University of Colorado, Boulder. Results from ambient noise tomography in the western USA using the USArray Transportable Array.

Natalia Poiata, Earthquake Research Institute, University of Tokyo, Tokyo, Japan. Source process of the 2003 Bam, Iran, earthquake: Subsurface rupture from combined measurements of rotational and translational ground motions.

Eric L. Lawrence, University of California, Los Angeles. Evaluation of schist- and mode choruses intensification on the night side during an injection event observed on the THEMIS spacecraft.

Nicholas M. Pedatella, University of Colorado, Boulder. Variability in the longitudinal structure of the low-latitude ionosphere.

Denys Piddychyn, Stanford University, Stanford, Calif. Characterization of the ionosphere above the HAARP HF heater using DEMETER satellite data.

Andrø Sandroos, University of Helsinki, Finland. Injection of heavy ions into diffusion shock acceleration.

Yuka Sato, Tohoku University, Sendai, Japan. Ground-based observation of MF auroral radio emissions in the polar cap and cusp regions.

Xudong Sun, Stanford University, Stanford, Calif. Polar magnetic field gradients observed during the last four solar minima.

Torbjorn Sundberg, Royal Institute of Technology, Stockholm, Sweden. On the properties of the ionospheric convection drivers.

Yujl Tsuji, Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Japan. Stormtime electric fields in the mid-latitude ionosphere observed by ground magnetometers and the Akebono satellite.

Nicholcm M. Viall, Boston University, Boston, Mass. On the source of periodic solar wind number density structures using the alpha to proton abundance ratio.

Marissa F. Vogt, University of California, Los Angeles. Reflection and flows in the jovian magnetosheath as inferred from magnetometer observations.

Linghua Wang, University of California, Berkeley. STEREO/STE observations of X-rays and ENAs.

Study of the Earth’s Deep Interior (SEDI)

Manuele Facenda, ETH Zürich, Zürich, Switzerland. Subduction zone anisotropic patterns produced by faulting and hydration of the slab.

Daniel M. Reaman, Ohio State University, Columbus. Windows into the solid-state viscosity and seismic anisotropy of Earth’s inner core inferred from experiments on micro-fabricated, controlled-geometry samples.

Jenny Suckale, Massachusetts Institute of Technology, Cambridge. How to make the most out of level sets for geodynamical modeling.

Matthew L. Whitaker, State University of New York at Stony Brook. Acoustic velocities and thermoelastic properties of FeS at high P and T.

Chunpeng Zhao, Arizona State University, Tempe. Investigating the edges of the large low shear velocity province in the lowermost mantle beneath the Pacific Ocean.

Tectonophysics (T)


Alicia Cruz-Uribe, Northern Arizona University, Flagstaff. Ages of Sevier thrusting from dating of metamorphic garnet using the Lu-Hf method.

Maria H. Gudmundsdottir, Stanford University, Stanford, Calif. Mechanisms of tec tonic uplift in the Santa Cruz Mountains, CA.

Janelle Homburg, Lamont-Doherty Earth Observatory, Columbia University, Palisades, N. Y. The jelly sandwich bites back: A case study of the viscosity contrast between the lower crust and upper mantle from the Oman ophiolite.

Christina Plattner, Ludwig-Maximilians-Universität, Munich, Germany. Baja transfer by partial coupling with the Pacific plate.

Margaret Pope, Pennsylvania State University, University Park. Effects of heterogeneous permeability on surface heat flow near Parkfield, CA.

Steven A. E. Smith, University of Durham, Durham, UK. The nature and evolution of fluid-related weakening mechanisms along a continental low-angle normal fault. The Zaccate Fault, Elba Island, Italy.

Daniel R. Vite, Australian National University, Canberra, Australian Capital Territory, Australia. Thermal durations and heating behavior for the Barron metamorphism, Scotland.

David E. Wolf, Cornell University, Ithaca, N. Y. Lu-Hf dating of garnet constrains timing of metamorphism and deformation, Prince Rupert area, British Columbia.

Volcanology, Geochemistry, and Petrology (VGP)

Emma R. Humphreys, University of Bristol, Bristol, UK. Melt xenoliths from the Cotatrava Volcanic Province, Spain: Evidence for carbonate-silicate interaction in the upper mantle.

Leif Karlstrom, University of California, Berkeley. The stability and spacing of crustal magma chambers.

Catherine Macris, University of California, Los Angeles. Inter-mineral iron isotope fractionation in San Carlos xenoliths.


Nicholas J. Pester, University of Minnesota, Minneapolis. Phase equilibrium controls on fluid chemistry at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge.

Shellie Rose, University of Pittsburgh, Pittsburgh, Pa. The eruptive behavior of Klyuchersky volcano, Kamchatka.

Aron R. Steiner, California State University, Fullerton. Mafic inputs to the Augustine magma system over the past 2,100 years.